
PETSC AND OVERTURE:
LESSONS LEARNED DEVELOPING AN INTERFACE
BETWEEN COMPONENTS �

Kristopher R. Buschelmany

buschelm@mcs.anl.gov

William D. Gropp
gropp@mcs.anl.gov

Lois C. McInnes
curfman@mcs.anl.gov

Barry F. Smith
bsmith@mcs.anl.gov

Abstract We consider two software packages that interact with each other as components:
Overture and PETSc. An interface between these two packages could be of
tremendous value to application developers in that Overture provides a simple
mechanism for generating the large, sparse systems of linear equations that cor-
respond to discretizations of a PDE, and PETSc provides a powerful collection
of methods for solving these systems. Two types of interfaces are discussed: the
internal interface between components, and the external interface for the appli-
cation developer. We compare three basic approaches to developing the internal
interface between Overture and PETSc, the final one of which is a peer-to-peer
model.

Keywords: Components, Interface, PETSc, Overture, Peer-to-Peer Interaction

�This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38.
yAll four authors are affiliated with the Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL, USA

1



2

1. INTRODUCTION

A complete application to numerically solve a partial differential equation
(PDE) and analyze the results typically involves: a mechanism for creating a
grid; a scheme for calculating spatial derivative approximations; a method for
time advancement, which may require use of linear algebra routines including
scalable linear and nonlinear equation solvers; another mechanism for visual-
ization and analysis of the data; and, since the application may be performed
on a parallel computer, routines for communicating data between processors.
With our expectations of software rising as the capabilities of computers in-
crease, writing a good implementation of any one of these tasks requires sig-
nificant expertise. Indeed, the expectation that one person, or one group, could
write an entire package for such a general-purpose tool is unreasonable. To
create such an application, we must take advantage of the expertise of several
persons or groups, each focusing on one component of the full application. We
can then consider a framework in which these components can be linked to-
gether. (In this paper, we shall use the terms “component” and “framework”
in a general sense as opposed to the specific definitions as set forth by the
Common Component Architecture Forum [1] and other organizations.)

Before creating such a framework, however, we must learn what makes a
good component. We can gain this insight by looking at successes and failures
of various projects that have attempted interaction between software packages.
In this paper, we shall consider two software packages that interact in this
manner, Overture [5, 6] and the Portable Extensible Toolkit for Scientific com-
putation, PETSc [2, 3, 4].

Overture is a collection of C++ classes that provide tools for solving PDEs.
It contains a tool for generating composite grids (i.e., lists of structured grids
that overlap) and a wide variety of operators of varying accuracy for computing
derivatives via finite difference, finite volume, and spectral methods on these
grids. Overture is also extensible in that application developers can create their
own sets of operators. Furthermore, several equation solver libraries can be
used within Overture, and new equation solvers can be added.

PETSc is a scalable library for the solution of PDEs and related problems.
With PETSc, one can create complete applications, as one might within Over-
ture, but the emphasis has been on generating a collection of solvers for linear
and nonlinear systems of equations as well as lower-level infrastructure for
managing the details of parallel programming.

An interface between these two packages could be of tremendous value to
application developers in that Overture provides a simple mechanism for gen-
erating large, sparse systems of equations, and PETSc provides a powerful col-
lection of methods for solving these systems. From the Overture developer’s
perspective, the obvious mechanism for this interface is via a PETSc equation



Developing an Interface between Components 3

solver class within Overture. The development of such a class is still ongoing,
but much can be learned about how to write useful components by observing
this work in progress.

Two types of interfaces shall be discussed: the internal interface between
components, and the external interface which the application developer will
use. Three basic approaches toward developing the internal interface between
Overture and PETSc have been explored. The first approach is to have Over-
ture convert its native data structures into those that the Overture developers
expect to be appropriate for linear algebra purposes, and to require any lin-
ear algebra solver to support these formats. The second is to force the linear
algebra solver (PETSc) to use the native Overture data structures as vectors
and matrices. The third approach is to have both Overture and the linear alge-
bra component work together to convert Overture’s native data structure into
whichever data structure the linear algebra component recommends. For the
external interface, one must balance simplicity with flexibility, to allow the
user to develop high-performance applications without needing to learn new
interfaces for well-known tasks.

2. THE INTERNAL INTERFACE

When working with multiple software components, the principal barrier to-
ward interaction is related to the data structures involved. The best data struc-
ture for one particular task, and component, is not the best data structure for
another. Clearly, all components cannot be expected to use the same data struc-
ture. An interface must be generated to determine the interaction between the
components at the level of the data structures. This interface is one that, if
properly implemented, is used by component developers and is not essential
for the application developer to use directly. In this section, three approaches
toward this internal interface are discussed.

2.1. OVERTURE CONVERTS DATA STRUCTURES TO
“STANDARD” VARIETIES

The first approach is for Overture to require linear algebra solvers to support
specific matrix and vector data structures that are common among linear alge-
bra toolkits. In particular, contiguous one-dimensional arrays are used to store
vectors. For storing matrices, the compressed and uncompressed sparse row
formats as well as their column-based counterparts are currently supported.
Overture provides a mechanism for the conversion into and out of these spe-
cific data structures. These data structures are created and destroyed by Over-
ture, but since they are supported by other components, those components are
free to manipulate them as they see fit.



4

From PETSc’s perspective, this approach is acceptable for vectors but has
only limited benefit for matrices. In particular, PETSc implements a (sequen-
tial) sparse matrix, which is entirely owned by one process (or duplicated
across all processes), using the compressed sparse row format. But, if this
matrix is to be distributed across several processors, the data structure must be
changed rather dramatically to achieve high performance. Similarly, if a cer-
tain block structure is present in the matrix, PETSc prefers a blocked variant
of the compressed sparse row format. The use of this blocked variant allows
for many fewer cache misses and register loads, resulting in vastly superior
performance. Neither of these two matrix formats is directly supported by
Overture, so to accommodate these data structures, a second conversion would
be required.

From the Overture developer’s perspective, there is only one procedure for
data conversion for vectors. This is quite easy to develop and maintain. Ma-
trices are another story, however. Overture currently supports four data struc-
tures. PETSc supports nine matrix formats currently, with four more under
development, but only one of these formats is supported by Overture. In fact,
a draft of the Basic Linear Algebra Subprogram (BLAS) standard proposed 13
sparse data structures to be supported, including those supported by Overture,
and only four which are supported by PETSc [7]. One could expect Overture
to provide routines for conversion into and out of each of these additional vari-
eties, but where would the list end? Furthermore, as new software packages are
developed, new data structures with increasing complexity are bound to arise.
To deal with this problem, PETSc allows additional formats that are user de-
fined; the user can provide new data structures and overload the basic PETSc
functions with appropriate implementations. How would Overture deal with
these additional types?

2.2. PETSC SUPPORTS NATIVE OVERTURE DATA
STRUCTURES

The presence of a user-defined type within PETSc suggests a different ap-
proach to the interface. The PETSc matrix and vector operations could sim-
ply be overloaded to use the data structures for vectors and matrices that are
defined by Overture. This approach has been used successfully to interface
PETSc with the Structured Adaptive Mesh Refinement Applications Infras-
tructure (SAMRAI) [9, 10], and other packages. It has the advantage that there
is no performance overhead associated with copying elements between data
structures in terms of memory or CPU usage.

Two sources of difficulty are associated with this approach, however. First,
the linear equation solvers within PETSc are primarily based on Krylov sub-
space methods. In these methods, the most fundamental operation between



Developing an Interface between Components 5

matrices and vectors is the matrix-vector product. Unfortunately, this oper-
ation is far less efficient when implemented using data structures that have
not been optimized for linear algebraic operations as has been done with the
PETSc data structures. The Overture data structures, although well optimized
for PDE discretization, are not optimized for linear algebraic operations. As
a result, the cost of copying the data into a PETSc data structure once per so-
lution of a linear system of equations is far less than the overhead associated
with using the Overture data structures for the matrix-vector product. This
alone would be sufficient for not choosing this approach, but there is another
challenge facing this approach.

Overture recognizes two basic linear algebra classes, vectors and matrices.
In PETSc however, there is a third basic class, preconditioners. In order to
achieve high performance when solving the large, sparse linear systems of
equations generated by the discretization of PDEs with Krylov methods, pre-
conditioners are essential. Since Overture has delegated the creation of pre-
conditioners to the linear algebra component, if this approach is to be used,
the mechanisms for interoperation of PETSc preconditioners with vectors and
matrices defined by non-PETSc data structures must be understood.

To achieve high performance when solving systems of linear equations,
many of the PETSc preconditioners place certain functionality requirements
on matrix and vector data types. These attributes include the ability to extract
the diagonal (block) elements of the matrix and to solve systems of equations
with the locally owned portion of the matrix. Furthermore, it is assumed that
one can obtain a pointer to a (locally owned) contiguous data array for each
vector type. Since the Overture data structures are not stored locally as a con-
tiguous array, the vector data must be copied into this format for use with many
of the PETSc preconditioners. As a result, if PETSc users provide their own
storage formats for matrices and vectors, they often provide their own precon-
ditioners. As this is not an option for the Overture developer, we return to the
concept of conversion between data structures.

2.3. PEER TO PEER INTERACTION

No developer can learn every possible data structure that could be used for
matrix and vector storage and then provide all possible conversion routines. As
a result, a two-step conversion process was used in early releases of Overture.
However, since the Overture developer knows its data structure, and the linear
algebra component has intimate familiarity with its own formats, the two pack-
ages should be able to cooperate and together carry out the conversion process
in a more direct manner, despite the complexity of the exact process involved.
To do so, we employ nontraditional approach.



6

The tradition in scientific computing software has been to gather groups of
developers together and have them discuss data structures and interfaces. The
intended result is a standard that other software packages can use; eventually,
high-performance implementations based upon these standards could be de-
veloped and used by all. This is the model that was used when generating the
BLAS and LAPACK standards. In the realm of dense linear algebra, the re-
sulting implementations have enjoyed a great deal of success. But this is not
the case for large, sparse systems generated from the discretization of PDEs
as the sparse matrix standard has yet to be finalized. Furthermore, the current
draft of the BLAS Standard for sparse matrices does not specify the underlying
implementation of the sparse matrix, leaving that decision to the author of the
particular BLAS implementation [8].

Instead of relying on the existence of a standard data structure, a generic
converter can be created. To do so, one must remove the responsibility for gen-
erating the matrix and vector data structure from Overture, and share it with
the linear algebra component. However, this linear algebra component can-
not be expected to know how to properly traverse a data structure that it does
not know. A compromise must be found; each component can be expected
to perform only the tasks it knows how to perform. This means that during
the conversion between the two data structures, Overture would provide two
services: size information and traversal path; and the linear algebra compo-
nent would provide two additional services: new data structure allocation and
element definition.

In particular, Overture would provide generic linear algebra information
such as the global and local matrix dimensions and a bound on the number
of nonzero elements in each row of the matrix. This information would then
get passed to the equation solver component via a routine called AllocateM-
atrix. PETSc and other components would then provide a specific implemen-
tation of AllocateMatrix that uses this information to generate an empty matrix
data structure. Overture would also provide a mechanism for walking through
its data structures while making calls to another routine, called SetMatrixEle-
ment, and each component would implement this routine in the most suitable
manner. The implementation is quite simple in C++. Each equation solver sub-
class is derived from a base class that has the two required functions declared
as virtual.

This approach raises several issues related to the efficiency of the conversion
process. The SetMatrixElement method would need to be able to insert an ele-
ment into any location in the matrix. This might require a significant amount of
alteration to the data structure or might involve communication between pro-
cessors. Clearly, some sort of aggregation process should be allowed, in which
case a SetMatrixRow could help. But, this would not be of use if the matrix
were stored in a column-based format. A generic SetMatrixElements would



Developing an Interface between Components 7

clearly be prefered. To allow for greater aggregation, the component developer
might also employ a stash based approach toward the setting of element values.
In this approach, the elements initially get set into a private stash (perhaps a
linked list), which would then get manipulated and converted into the final for-
mat. As a result, another virtual operation, AssemblyFinalize, should be added
to the base equation solver class to facilitate this second step.

This has introduced a second non-traditional characteristic of this conver-
sion process. In many linear algebra libraries, there is no concept of an invalid
matrix. That is to say, once a matrix is created, it can be used. The stash based
approach to setting elements in a matrix requires that this not be the case. By
setting a single element, the matrix data structure becomes invalid, since in-
formation about the matrix itself is located in the temporary stash. The matrix
is then made valid by performing an AssemblyFinalize step after additions to
the stash are complete. It would be possible to hide the explicit call to As-
semblyFinalize from the end user by placing this call within each operation
that requires a valid matrix data structure, but there is a penalty for such an
approach.

In PETSc, when adding elements to a matrix, a stash is used [2]. For
parallel matrix formats this provides one particularly important benefit, ele-
ments can be added in one process that are to be stored as part of the local
matrix in a different process. To allow the application developer to over-
lap the required communication with computation, PETSc divides the pro-
cess into two stages: MatAssemblyBegin, which initiates the communication,
and MatAssemblyEnd which terminates communication and performs the fi-
nal data structure assembly. If there were no concept of an invalid matrix in
PETSc, or if this concept were hidden from the application developer, the idle
time that occurs during these communication stages could not be used for use-
ful computation.

This mechanism is quite useful for achieving high performance and could be
incorporated not only by dividing the Assembly Finalize into two pieces, but
by dividing the entire conversion process into two parts. MatrixConversion-
Begin would contain allocation of memory for the matrix data structure in the
equation solver, and traversal of the Overture data structure while setting each
element (or row/column) of the matrix, making the matrix invalid. MatrixCon-
versionEnd would assemble the valid matrix and perhaps provide some useful
debugging options to verify that the valid matrix was assembled properly.

3. THE EXTERNAL INTERFACE

Finally, we must determine how to appropriately encapsulate the interface
information to generate a well-defined minimum interface layer as well as ad-
ditional convenience layers. The question to be addressed is one of exposure:



8

How much is enough? Should an application developer be expected to know
the entire application-programming interface (API) for each individual com-
ponent involved? That is to say, should an Overture user be expected to know
all the details of how to use PETSc? Clearly, the answer is no; but the same
question should be asked about a PETSc user. Furthermore, knowledgeable
PETSc users should not feel as though they are restricted when using Overture
to generate their systems of equations, nor should they be required to learn
a completely new API for the PETSc aspects of their application. The mini-
mum layer of interface must be found and adequately described, while other
convenience layers may be provided so that multiple APIs do not need to be
learned.

In this area, a “least common denominator” interface makes some sense. An
Overture user with no experience with PETSc, or other equation solvers, would
have access to a very basic set of commands: BuildMatrix, BuildRHSAnd-
SolutionVector, and Solve. A common interface for selecting various linear
equation solvers such as GMRES and CG and preconditioners such as ILU
and Jacobi would provided, as well as mechanisms for selecting the different
data structure conversion options. But, this alone would be a gross limitation
for expert users of PETSc who wish to use their own advanced equation solvers
and preconditioners built within PETSc.

Similarly, the Overture user is primarily interested in finding a numerical
solution to a PDE subject to a certain discretization. Many methods for solving
time dependent PDEs do not require solving a system of linear equations but
do require solution of a nonlinear system of equations. Many linear algebra
components do not provide a mechanism for this, but PETSc does. It would be
a great disservice to application developers if this additional capability within
PETSc could not be exploited.

To achieve this end, the PETSc matrix and vector data structures are public
members of the class PETScEquationSolver. In this manner, once the Build-
Matrix and BuildRHSAndSolutionVector routines have been called, these data
structures can be extracted, and the full PETSc API can be used without lim-
itation, if desired. Furthermore, an Overture-enhanced version of the PETSc
API for solving nonlinear systems has also been generated to simplify this pro-
cess, which may be incorporated into a PETScNonlinearEquationSolver class
in future versions of the PETSc-Overture interface.

4. LESSONS LEARNED

From this work, we have identified various guidelines that a component de-
veloper should follow. For a component to be used, it must interact with other
components. Common approaches to enable this interaction have been to man-
date adherence to a standard data structure or to provide of a single data struc-



Developing an Interface between Components 9

ture for all to use. For the solution of large, sparse systems of linear equations,
these approaches do not allow the user sufficient flexibility to obtain high per-
formance. This limitation in turn discourages the use of that component. One
must accept the fact that data structures as well as the algorithms that use those
data structures determine performance. To allow for the use of a wide variety
of data structures, a data conversion process is required. For conversion pro-
cesses to be successful, both sides in the conversion process need to cooperate.
An appropriate division of tasks and assignment of responsibility is essential.
In general, this division of tasks must allow each component to provide the
services and information that it can, and must not require knowledge beyond
the scope of the component. By specifying methods to be used and not imple-
mentations, we allow component writers the freedom to implement the highest
performance data structures for their specific task, without placing limitations
on the interaction with other components.

When making a component, two aspects to the interface require attention:
the external interface detailing what it can accomplish, and the internal inter-
face to other components. It is easy to neglect the second while focusing on
the first. But, doing so can make the component much less powerful.

Ultimately the success of the component lies in the answer to one question:
Do people use it with other components?

Acknowledgments

We express our thanks for the invaluable assistance of Satish Balay who helped us overcome

many of the technical problems associated with software interaction and software development.





References

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward a Common Component Architec-
ture for High-Performance Parallel Computing. In Proceedings of High
Performance Distributed Computing, pages 115–124, 1999.

[2] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. Efficient Management of Parallelism in Object Oriented Numeri-
cal Software Libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhauser Press, 1997.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. PETSc 2.0 Users Manual. Technical Report ANL-95/11 - Revi-
sion 2.0.29, Argonne National Laboratory, 2000.

[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. PETSc Home Page. http://www.mcs.anl.gov/petsc, 2000.

[5] D. Brown, W. Henshaw, and D. Quinlan. Overture: An Object-Oriented
Framework for Solving Partial Differential Equations on Overlapping
Grids. In Proceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientific and Engineering Computing, pages 215–
224. SIAM, 1999.

[6] D. Brown, W. Henshaw, and D. Quinlan. Overture: Object-Oriented Tools
for Solving CFD and Combustion Problems in Complex Moving Geom-
etry. http://www.llnl.gov/CASC/Overture, 1999.

[7] Basic Linear Algebra Subprograms Technical Forum. DRAFT-Document
for the Basic Linear Algebra Subprograms Standard, August 11, 1997:
Sparse BLAS. http://www.netlib.org/utk/papers/sparse.ps, 1997.

[8] Basic Linear Algebra Subprograms Technical Forum. DRAFT-Document
for the Basic Linear Algebra Subprograms Standard, May 31, 2000:

11



12

Sparse BLAS. http://www.netlib.org/cgi-bin/checkout/blast/blast.pl,
2000.

[9] R. Hornung and S. Kohn. The Use of Object-Oriented Design Patterns in
the SAMRAI Structured AMR Framework. In Proceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing, pages 235–244. SIAM, 1999.

[10] S. Kohn, X. Garaizar, R. Hornung, and S. Smith. SAMRAI Home Page.
http://www.llnl.gov/CASC/SAMRAI, 1999.


